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Abstract A fully automatic initialization approach for 3D-
model-based vehicle tracking has been developed, based on
Edge-Element and Optical-Flow association. An entire au-
tomatic initialization and tracking system incorporating this
approach achieves results comparable to those obtained by
earlier experiments based on semi-interactive initialization,
provided the assessment criteria are roughly equivalent. Ex-
periences with a large testing sample—about 15 minutes of
inner-city traffic videos—are discussed in detail.
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1 Introduction

In 1987, a conference invitation to discuss over a decade
of research on image sequence evaluation provided an op-
portunity to document experiences and expectations (Nagel
1988). Continuation of this research lead us to shift our em-
phasis from data-driven to model-based vehicle tracking as
documented in Nagel (2004). These are but two alterna-
tives from a larger set of options which comprise ‘model-
free tracking’, 2D-model-based tracking in the image plane,
3D-model-based tracking in the scene domain, and ‘hybrid’
approaches. The latter exploit specific assumptions about
the relation between the agent images to be tracked and the
agent pose in the scene space. A hybrid approach assumes,
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e.g., that a 2D-blob in the image domain represents a vehi-
cle on a ‘ground plane’ whose parameters are known in the
camera coordinate system due to a camera calibration—see,
e.g., Magee (2004), Kumar et al. (2004), or Pece and Worrall
(2006).

In combination with knowledge about the internal and
external parameters of the camera, the use of a 3D vehicle
model allows to determine the vehicle image for any rela-
tive vehicle pose with respect to the camera. Mismatches
thus can be diagnosed more easily as being due either to ini-
tialization or tracking errors or to inappropriate parameter
estimates for vehicle model or/and camera.

A new system, Motris, had been designed, imple-
mented, and shown to achieve at least the tracking rate ob-
tained earlier with Xtrack, as reported in Dahlkamp et al.
(2007). Usually video-based vehicle tracking assumes that
a vehicle will continue its steady-state motion. The current
estimates for the parameters representing the vehicle state—
regardless whether this state refers to an image-plane coordi-
nate system or to a 3D-world coordinate system—are com-
bined with a geometric motion-model in order to predict the
vehicle state for the next observation time. In most cases
this motion-model assumes a straight-line or stationary cir-
cular movement at constant speed. Extensive experiments
have been performed to evaluate different methods to exploit
these assumptions for short-term prediction of 3D-model-
based vehicle tracking. The scoring functions exploited for
these experiments depend non-linearly on their arguments,
implying a dependency on the initialization of the tracking
step proper. In order to disentangle the initialization effects
from variations in the formulation and parameterization of
the tracking step proper, the initial conditions for each vehi-
cle had been determined interactively beforehand and have
been re-used for different tracking methods and associated
parameter variations. In these experiments, the initialization
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information comprised the vehicle model to be used, the
frame-number where tracking should start and terminate as
well as whether the vehicle had been recorded in bright sun-
shine (facilitating the exploitation of shadow-casting to ro-
bustify vehicle tracking) or in diffuse illumination without
extended shadow-casting. As a result of these experiments,
tracking proper does no longer appear to be the most impor-
tant bottleneck. It thus appeared natural to use Motris for
a systematic investigation of a fully automatic initialization
whose treatment constitutes the remainder of this contribu-
tion.

Following a terse discussion of related publications in
Sect. 2, Sect. 3 describes the component processes required
in order to automatically initialize 3D-model-based track-
ing. This automatic initialization approach has been ex-
tended in Sect. 4 to provide a cue for the detection of poten-
tial tracking irregularities. The capabilities of the enlarged
system have been tested in a series of experiments which
evaluate the same video sequences already studied in Haag
and Nagel (1999), although now without interactive help by
the experimenter during the initialization phase. Experimen-
tal results obtained by such fully automatic initialization and
tracking are presented in Sect. 5, with an assessment follow-
ing in Sect. 6.

2 Discussion of Related Publications

Although road vehicle tracking in traffic videos has con-
siderable appeal for various applications, see Kastrinaki et
al. (2003) for this application domain in general or Sun et
al. (2006) for on-board vehicle detection and tracking, this
manuscript focuses on basic research approaches to 3D-
model-based tracking of vehicles recorded by a single sta-
tionary video camera. This specification excludes coverage
of multi-ocular tracking, for example using a moving stereo-
camera pair as in Leibe et al. (2006), as well as data-driven
approaches, in particular ones operating only in the image
plane. Regarding the latter the reader is referred to the spe-
cial issue Collins et al. (2000), to Elgammal et al. (2002),
or to Nadimi and Bhanu (2004) who pay special attention to
the separation between moving vehicles or people and the
co-moving shadows cast by their bodies.

A recent survey of object motion and behaviors by Hu
et al. (2004) comprises surprisingly few references to 3D-
model-based vehicle tracking since Haag and Nagel (1999).
Our own search for relevant archival publications—see
Dahlkamp et al. (2007)—confirms this finding and here ex-
tends its validity even up to the immediate past. Our subse-
quent discussion will be restricted to publications treating
questions which are directly associated with our subject. We
attempt, however, to at least mention some important publi-
cations treating system aspects beyond our current focus. In

a notable exception from this scarcity of publications con-
cerned with 3D-model-based tracking in monocular video
sequences, Pece and Worrall (2002), see too Pece and Wor-
rall (2006), postulate a probability distribution of Edge El-
ement (EE) locations around model segments which have
been projected into the image plane according to the current
vehicle state estimate. The state estimate is updated by max-
imizing the postulated likelihood for observing grayvalue
transitions. A recently published variant studies a marginal-
ized likelihood model which takes into account possible de-
viations of vehicle shapes from the modeled one, see Pece
(2006).

Although this latter approach has been studied for track-
ing, it could be considered, too, to offer a methodological
alternative for initialization in comparison with an earlier,
search-based approach reported in Tan et al. (1998). This
would require, however, at least a rough idea where to look
for a vehicle image. Such a cue usually is obtained by back-
ground subtraction—see, e.g., Stauffer and Grimson (2000)
or Elgammal et al. (2002)—and combined with the ‘ground-
plane assumption’ in what has been denoted as a hybrid ap-
proach above in order to obtain an initial estimate for a ve-
hicle’s location in the scene. This latter approach has been
used, e.g., in the experiments reported by Pece and Worrall
(2006).

Kumar et al. (2004), too, start from foreground regions
obtained by background subtraction based on a ‘home-
grown’ approach for background estimation and mainte-
nance. Attributed graphs are used to group the resulting
foreground regions for initialization of image-plane track-
ing. A Kalman-Filter exploits hypotheses about 2D posi-
tion, movement, and shape continuity. Based on tracking
results, 2D-blob trajectories in turn are associated with hy-
pothesized 3D category models moving on the ground plane
of the scene, i.e. realizing a hybrid approach differing from
the one used by Pece and Worrall (2006) regarding the ‘2D-
blob substrate’ for the transition from 2D to 3D. Dynamic
programming techniques facilitate to maintain the charac-
teristics of a category instance even in cases where the 2D-
blob substrate may change substantially due to merging and
splitting caused by, e.g., occlusions or artefacts of the blob
generation steps.

In contradistinction to the exploitation of background
subtraction as a means to generate pose cues for moving ve-
hicles, the estimation, segmentation, and analysis of Optical-
Flow (OF) fields can provide the required rough initial esti-
mate of vehicle pose in a manner less sensitive to illumi-
nation changes because it is based on a motion-cue and not
on a less specific change-cue. A useful recent discussion of
related questions can be found in Renno et al. (2006).
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3 Component Processes for Automatic Initialization

The entire automatic initialization process consists of a
number of component processes which realize the follow-
ing series of steps, see Ottlik (2005):

1. Optical-Flow-field estimation;
2. Optical-Flow-field segmentation – resulting in so-called

‘Object Image Candidates (OICs)’;
3. ‘Confidence accumulation’ by short-time image-plane-

tracking of OF-field segments, i.e. OICs;
4. A consistently trackable OIC provides velocity and ori-

entation information which is exploited to reduce the
search space for a Hough-Transform-determination of
vehicle type and location in the 3D-scene.

It is the task of these processes to provide initial estimates
for the five components of a vehicle state-vector x which
comprises the x- and y-location of the vehicle reference
point on the road plane, the vehicle orientation, its speed,
and the steering angle for the front-wheels (i.e. the angle
between the longitudinal axis of the vehicle and the inter-
section of the wheel plane with the road plane). The initial-
ization value for the steering angle is always assumed to be
zero degrees. As a consequence, initial values have to be es-
timated only for the first four components of the state vector.

3.1 OF-Field Estimation Based on the Gray-level Structure
Tensor

Good OF-vectors can be estimated using the Gray-level
Structure Tensor (GST), provided the masks for the deriv-
ative operators and the integration area are chosen suit-
ably, see Middendorf and Nagel (2001); Middendorf (2004).
In analogy to the pseudo-inverse-based OF-estimation ap-
proach used in Haag and Nagel (1999), entries into the op-

erator masks used for the estimation of spatiotemporal gray-
value derivatives take into account the line-structure of the
interlaced video recording such that the required deriva-
tives can be determined at each half-frame (i.e. ‘field’) time
in full-frame spatial resolution. Whenever ‘frame’ is men-
tioned in the sequel without further qualification, it corre-
sponds to a time-interval of 20 ms!

In principle, this approach has the additional advantage
that an analysis of the GST-eigenvalue structure allows to
determine whether the local grayvalue distribution provides
enough information to reliably estimate an OF-vector. It
turned out, however, that this information does not need to
be evaluated explicitly because less reliably estimated OF-
vectors usually were excluded already during the OF-field
segmentation phase from being incorporated into OICs.

3.2 OF-Field Segmentation

The OF-field is estimated and segmented for each frame
(i.e. time-point) of the image sequence. In order to avoid
multiple initializations for the same vehicle, all OF-vectors
within an already accepted OIC are discarded from consid-
eration during a continuation of the segmentation process.
Furthermore, only OF-vectors exceeding a minimum norm
are taken into account. In the experiments reported here, this
threshold has been set to a minimum of 0.2 pixel per frame,
which is equivalent to a speed of about 4 km/h for a body
moving in the depicted scene.

An OF-vector within a segment is compared to its neigh-
boring vectors. In case a neighboring vector is compatible
with respect to norm and orientation, it is assigned to this
same segment. This compatibility check is carried out using
separate thresholds for the maximum difference regarding
the norm and the orientation. Figure 1(left panel) illustrates

Fig. 1 (Left panel) OF-segmentation at frame 511 in image sequence
stau02. For illustration purposes, OF-vectors have been suppressed
if their norm was smaller than a threshold. This leaves the stationary
background—including momentarily stationary vehicles—uncovered

by OF-vectors. Note that in some cases OF-segments extend beyond a
vehicle image while in other cases they do not cover the vehicle image
completely. (Right panel) Vehicle models used for vehicle type selec-
tion: (1) Hatchback, (2) Van, (3) Transporter, and (4) Tramway
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the segmentation result for frame 511 in image sequence
stau02.

3.3 Spatiotemporal Analysis of OF-Field Segments

In order to select OF-segments with a high plausibility to
correspond to an OIC, the overlap between OF-segments ob-
tained for adjacent frames is analysed. In case the overlap is
large enough (a minimum overlap of 90% was required for
the experiments reported in the sequel), it is assumed that
these OF-segments belong to the same vehicle. Due to the
parameter settings used for OF-computation, only grayvalue
structure displacements up to an image-plane shift-velocity
of 3.5 pixel per frame could be determined reliably. Thus
even in the case of small (i.e. 40 pixel long) and fast moving
vehicles, an overlap of 40−3.5

40 ≈ 91% should be observable.
In order to determine the time when a vehicle has become

fully visible, it is assumed

– that an OF-segment can be tracked for several consecutive
frames (for a minimum of 10 frames in the experiments
reported in the sequel) and

– that its size stays almost constant throughout this phase.
This assumption has been concretized to the requirement
that the size of an OF-field segment can have changed by
at most 10% during this period.

The OF-field-segmentation and OF-segment-tracking
processes have to identify those vehicles which have be-
come completely visible within the Field-of-View (FoV).
Problems resulting from more difficult situations—such as,
e.g., splitting or merging of OF-segments—are not taken
into account because it is assumed that these problems are
often due to occlusions by stationary objects or other mov-
ing vehicles. Moreover, the segment contour does not need
to be determined very precisely because edge information
will be exploited during a subsequent vehicle position esti-
mation step. The OF-field-segmentation and -tracking algo-
rithms thus could be kept rather simple.

The clusters of OF-vectors obtained according to the pre-
ceding steps provide already a good initial estimate for ve-
locity and orientation of a vehicle, provided vehicles are ori-
ented essentially parallel to their velocity vector in the 3D-
scene (see Fig. 2). It thus remains to obtain an initial esti-
mate for the vehicle location on the road plane.

3.4 Vehicle Localization

OF-field segmentation itself often does not result in a pre-
cise enough vehicle localization. Whenever two vehicle im-
ages are close to or even overlap each other and the vehicles
drive at almost the same speed, a segmentation based solely
on OF-vectors will lead to a single segment. Localization,
therefore, exploits edge information and vehicle models in
addition to OF-field information.

The initial orientation of the object candidate is esti-
mated by projecting the mean OF-vector of the OF-segment,
positioned at its centroid, into the 3D-scene. Using a 3D-
vehicle-model and the initial orientation obtained by the pre-
ceding step, this image of tentatively visible model edge
segments—i.e. of a set of expected EEs—is tessellated.

In a next step, orientations of the expected EEs are deter-
mined by calculating the derivative of the tessellated model-
segment image using the same derivative algorithm as for
EE extraction from the image sequence. This step has been
introduced, because gradient directions close to a corner do
not correspond to the visible model segment normals, due to
the convolution used for the determination of derivatives.

In a further step, a Hough-Transformation process finds
a centroid of this tessellated image maximizing the number
of EEs which are compatible with the ‘synthetic EE-image’.
The Hough space represents the possible pixel positions of
the tessellated image’s centroid. In case an EE’s orientation
is close to one of the expected EE’s orientation, a fixed score
is added to the bin which corresponds to the expected EE’s
centroid. In order to accommodate discretization errors and
to take into account that the 3D-vehicle-models provided for
this search phase do not perfectly correspond in general to
the observed vehicles, each EE votes for a 3×3-region in the
Hough space. Figure 3 illustrates the described algorithm.

3.5 Selection of a Vehicle Model

Several vehicle models (see Fig. 1, right panel) are provided
to the system and are checked for compatibility with EEs
extracted from the current frame within the OF-segment in
a predefined order, namely from the largest (tramway) to the
smallest (hatchback). Compatibility is checked using thresh-
olds, one for the minimum score in the Hough space and a
second one for the overlap between OF-segment and object
candidate. The first (i.e. largest) vehicle model passing these
compatibility tests will be chosen for the initialization of a
tracking process.

4 Optical-Flow-Vector Coverage Rate (OFCR) as
Irregularity Cue

A state-vector x can be assessed by determining how many
compatible features can be found in the image sequence.
In case of motion estimation, OF-vectors u extracted at
the position of the object candidate projection are checked
for compatibility with the expected displacement rate field.
A displacement rate vector v(ξ ,x) at pixel position ξ is
computed based on the initialized 3D-vehicle-model and
the current state-vector x. It is assumed that the difference
�u = (�ux,�uy)

T = v − u between the displacement rate
vector and the OF-vector u(ξ ) at pixel position ξ is normally
distributed with expectation 0 and covariance Σ . Thus the
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Fig. 2 Detection phase:
a Section enlargement of frame
99 in image sequence stau02
with tracking results overlaid.
b OF-vectors exceeding the
minimum displacement norm.
The orientation is color
encoded. c OF-tracking results.
White pixels mark all
OF-vectors discarded from
segmentation and tracking. The
green segment exceeds the
image of the van since both cars
covered by this OF-field
segment drive at almost the
same speed and thus their
OF-vectors coalesce into a
single segment. d State
estimation obtained from green
OF-segment in panel (c). As can
be seen, orientation can be
estimated appropriately in
contrast to the position which
has to be refined in further steps

induced Mahalanobis distance MOF is

MOF = �uT · Σ−1 · �u. (1)

The covariance Σ can be computed by taking into account
measurement uncertainty ΣOF and the uncertainty P + of
the updated state estimate x̂+ (see Ottlik 2005):

Σ = ∂�u
∂u

(u, x̂+) · ΣOF ·
(

∂�u
∂u

(u, x̂+)

)T

+ ∂�u
∂x

(u, x̂+) · P + ·
(

∂�u
∂x

(u, x̂+)

)T

,

= ΣOF + ∂�u
∂x

(u, x̂+) · P + ·
(

∂�u
∂x

(u, x̂+)

)T

. (2)

In case the Mahalanobis distance exceeds a threshold with
respect to the (1 − α) quantile of a χ2(2) distribution (two
degrees of freedom due to the two independent components
of �u), the displacement rate vector and the OF-vector are
assumed to be incompatible. The ratio rt between the num-
ber of compatible OF-vectors and the number of expected
vectors—the so-called ‘Optical-Flow-vector Coverage Rate
(OFCR)’, see Fig. 5—can be used to assess the state esti-
mate.

Of particular interest is a closer analysis of the OFCR
temporal development shown in the left panel of Fig. 5:
when the vehicle enters into the occlusion situation, the OF-
vectors determined for the pixel positions on the vehicle
image increasingly correspond to the ones estimated from
the—essentially stationary—tree foliage with the result that
these estimates are close to zero and thus are incompatible
with the expected displacement rate on the vehicle surface.



216 Int J Comput Vis (2008) 80: 211–225

Fig. 3 Localization using a
Hough-Transformation:
a Vehicle model image
generated using the state
estimation derived from the
corresponding OF-segment.
b Edge elements (EEs) extracted
from the current video frame.
c Accumulator-Array as a result
of the Hough-Transformation,
with a pixel having been painted
the brighter the higher the score
in this bin; red dot:
OF-segment’s centroid, see
Fig. 2; green dot: position of
maximum. d New state
estimation using the localization
obtained from the
Hough-Transformation

The number of compatible OF-estimates thus decreases and,
thereby, the stabilizing effect which the OF-estimates usu-
ally exert on model-based tracking. Tracking begins to fail
with the effect that the estimated model speed drops to zero,
too. This in turn, however, results in a (fake) compatibil-
ity between the incorrectly estimated model state and the
(near-)zero OF-estimates which can be seen, e.g., in a sud-
den increase of the OFCR around frame number 1300 in
Fig. 4.

This assessment can be used to identify situations where
tracking has failed or where a vehicle has been occluded
almost completely. In such situations, tracking of the corre-
sponding vehicle is discontinued. In order not to stop track-
ing when a vehicle is occluded for only a short subsequence
of frames—by, e.g., a mast—the assessment figure-of-merit
at is accumulated over time using a decay factor γ :

at = (1 − γ ) · at−1 + γ · rt . (3)

Figure 5 illustrates the assessment for several vehicles which
are temporarily occluded by a tree.

5 Experiments With the stauXX Video Sequences

The incorporation of an automatic initialization process
into our 3D-model-based vehicle tracking system Motris
should make its use easier by obviating the necessity to pro-
vide (partial) initialization information for each vehicle.

An initial experimental evaluation of the fully automatic
initialization described in Sect. 3 has been presented in Ott-
lik (2005)—albeit based on a set of only three video se-
quences. It thus appeared desirable to investigate the hypoth-
esis that this new automatic initialization yields tracking re-
sults which are comparable in quality to those reported ear-
lier in Haag and Nagel (1999). These earlier results had been
obtained with the Xtrack-system and a semi-automatic ini-
tialization procedure on a relatively large sample size of 394
vehicles.
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Fig. 4 Optical-Flow-vector
Coverage Rate (OFCR) (top left
panel) illustrated for vehicle
# 14 in image sequence
stau02. This vehicle becomes
partially occluded by a tree as
shown in the top right panel.
The bottom panels illustrate
OF-vectors which are
compatible (colored in yellow)
or incompatible (colored in
blue) with the displacement
vectors determined for the
corresponding pixels on the
basis of the current state vector
estimate. In the bottom left
panel, only a smaller fraction of
this vehicle is occluded by a tree
whereas the bottom right panel
illustrates OFCR for a somewhat
later point in time when a larger
fraction of this vehicle has been
occluded by a different, more
extending branch of the tree.
The estimated vehicle trajectory
shown in the top right panel
indicates that this occlusion
resulted in a tracking failure

Fig. 5 The left panel shows the ‘Optical Flow Coverage Rate
(OFCR)’, i.e. the ratio between the number of OF-vectors (which are
considered to be compatible with their corresponding displacement
vector for vehicles driving along the lane indicated in the right panel)
and the expected total number of displacement vectors within the ve-
hicle image derived from the current vehicle state vector estimate. The
abscissa denotes the position of a vehicle on the lane (see red line in
right panel). The ratio has been plotted for four different object can-

didates, each one plotted in a different color. The red blob in the right
panel indicates the image area where vehicles are occluded by a tree.
As soon as vehicles are occluded, the plotted ratio decreases signif-
icantly. Two vehicles can be successfully tracked after re-emerging
from this occlusion situation: this fact is reflected by the increase of
the plotted ratio after the corresponding vehicles have passed the oc-
cluding tree

It is not possible, however, to ascribe any difference be-
tween the results obtained by the Xtrack-system and here
solely as being due to the effects of an automatic initializa-
tion, because Motris differs in several respects from the
Xtrack-system.

5.1 Boundary Conditions for a Comparison

During the design and implementation of Motris, a mul-
titude of local modifications and improvements have been
realized in order to create a system which is easier to un-
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Fig. 6 Example for tracking
assessed as ‘very good’ (++):
Object Candidate (OC) 17 in
image sequence stau12

derstand, to use, and to maintain than the latest version of
Xtrack. In addition, the redesign aimed at creating a sys-
tem which also operates more robustly than Xtrack to the
extent possible without introducing changes of a more fun-
damental nature. The combined effects of these local algo-
rithmic changes have been studied extensively with the con-
clusion that the Motris-system without automatic initial-
ization yields results at least as good as those obtained ear-
lier using the Xtrack-system, provided the same initial-
ization steps are used in both systems, see Dahlkamp et al.
(2007).

For the record, it is mentioned that we used Motris here
with the ‘steering angle’ option whereas the results reported
by Haag and Nagel (1999) for the Xtrack-system had been
obtained with the older ‘angular velocity’ option. It is pos-
sible to replace the state vector component ‘angular veloc-
ity’ by the ‘steering angle’. The vehicle orientation then re-
mains essentially constant even for very small or zero speeds
whereas a non-zero angular velocity value caused by noise
effects may result in orientation changes for a (near) zero
speed value. The principal advantage of the ‘steering angle’
option consists in the fact that we no longer need a separate
threshold in order to suppress erroneous orientation updates
for very small speed values. Previous extensive experiments
have shown that the results obtained with the steering angle
option are at least as good as those obtained using the an-
gular velocity. We thus posit that this methodological differ-
ence with respect to Xtrack does not create any significant
bias for the conclusions to be drawn from the experiments
reported in the sequel.

5.2 Evaluation of the Automatic Initialization Process

All experiments have been carried out using the same set of
parameters.

5.2.1 Assessment Procedure

As in Haag and Nagel (1999), tracking results are assessed
as ‘very good’ (denoted as ++), ‘good’ (+), ‘tolerable’ (o),
‘bad’ (–), or as a tracking ‘failure’ (- -). Twelve image se-
quences (stau01 – stau12) have been evaluated com-
prising about 44 000 frames (i.e. about 15 minutes of video).
Altogether 394 vehicles are visible in these sequences. Un-
fortunately, 33 vehicles do not correspond to any vehicle
type for which models have been provided currently to the
system. These ‘non-standard types’ comprise, e.g., trucks
with trailers or busses. Tracking such vehicles with the ‘clos-
est’ model among those currently admitted usually fails be-
cause these vehicles are larger than the provided models
which often leads to multiple initializations. Such ‘non-
standard’ vehicles have not been taken into account for the
assessment. We are thus left with a Reference Set (RS) com-
prising 394 − 33 = 361 vehicles admitted for assessment.

Regarding a comparison with results reported in Haag
and Nagel (1999), an additional aspect has to be taken into
account for an overall assessment, namely the delay between
the time when a vehicle has become fully visible in the FoV
of the recording camera and the time point of actual initial-
ization. In case a vehicle

1. has been initialized within 50 frames (i.e. 1 second) after
it has become fully visible and

2. the most appropriate vehicle type has been chosen among
those admitted and

3. the object candidate covers the visible vehicle image very
well,

tracking is assessed as very good (see Fig. 6).
Smaller discrepancies from the (interactively determined)

real state for the entire period of visibility or even inter-
mittent larger discrepancies, which subsequently have been
corrected automatically, are denoted as good tracking (see
Fig. 7).



Int J Comput Vis (2008) 80: 211–225 219

Fig. 7 Example for a tracking
result which has been assessed
as ‘good’ (+): Object Candidate
(OC) 9 in image sequence
stau03. Initialization and
tracking is good until the car
halts at the traffic light. During
the halt the model is distracted
by other vehicles. After the
vehicle restarts, tracking can be
improved again

Fig. 8 Examples for tracking
assessed as ‘tolerable’ (o):
Object Candidates (OCs) 4 and
21 in image sequence stau05
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In those cases where the object candidate does not fit pre-
cisely but still covers at least half of the vehicle image, track-
ing results are assessed as tolerable (see Fig. 8).

When (i) initialization takes place later than 50 frames
after the vehicle has become fully visible, if (ii) the wrong
vehicle type has been chosen, or if (iii) the object candidate
does not cover most of the vehicle image, the result is con-
sidered as bad (see Fig. 9).

In case (a) no object candidate at all has been initialized
for a visible vehicle, if (b) several candidates have been ini-
tialized for the same vehicle, or if (c) tracking fails and this
failure has not been detected automatically, tracking is as-
sessed as a failure (see Fig. 10).

If a vehicle becomes temporally occluded—by, e.g., a
tree—tracking is discontinued when the vehicle is no longer
visible and a new object candidate is initialized after the ve-
hicle has ‘reappeared’. Thus two object candidates have to
be initialized for one vehicle. In case tracking is assessed
differently for these two object candidates, the overall as-
sessment will be chosen as the worse assessment among
these two (see Fig. 11).

Fig. 9 Example for tracking assessed as ‘bad’ (-): Object Candidate
(OC) 4 in image sequence stau12

5.2.2 Results

About 15% of all vehicles in the Reference Set (RS) can be
tracked as ‘very good’ and 23% as still ‘good’. Assignment
to the categories ‘tolerable’, ‘bad’ and ‘failure’ is more sub-
tle and will be discussed below in more detail.

Initialization Only 3 vehicles have not been initialized at
all, i.e. less than 1% out of 361. In 16 cases (i.e. 4%), mul-
tiple initializations occurred—mainly due to a wrong choice
of the vehicle type or due to bad tracking results. A bad ini-
tial localization occurred for 73 vehicles (i.e. about 20%)
due to background structure. 48 vehicles have been initial-
ized lately. In 22 cases the only reason for a ‘bad’ assess-
ment is that these vehicles were partially occluded by masts
shortly after they had become visible (see Fig. 12).

In 7 cases, a re-initialization has taken place lately, oth-
erwise tracking of those vehicles would have had to be as-
sessed better, see Fig. 13.

Model Selection In about 16% the wrong vehicle type has
been selected. Type selection is a difficult task because the
vehicle models supplied to the system rarely match precisely
the vehicles seen in the videos. It thus can happen, e.g., that
in the case of a station wagon observed in the image se-
quence the hatchback model used does not match very well
but the van model might match better. In 38 cases the wrong
type selection was the only failure for a vehicle. These ve-
hicles have been assessed as satisfactory in the variant ‘fair
assessment’.

Automatic Detection of Tracking Failures There have been
19 cases overall where tracking failures have not been de-
tected automatically. In 9 of these cases, an occlusion situ-
ation by, e.g., a tree or a traffic sign has not been detected.
Unfortunately, the tracking of vehicles which were only par-
tially occluded by a thin mast has been discontinued, too,
in 8 cases. For two additional vehicles, tracking has been
discontinued automatically although they were fully visible
(false alarm). Each of these two cases has been treated as a
failure.

Fig. 10 Example for a tracking
‘failure’ (- -): Object Candidate
(OC) 5 in image sequence
stau07 at frame 369 (left
panel), 500 (center), and 3410
(right)
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Fig. 11 Error of type selection
in second initialization leads to
an overall error: Object
Candidate (OC) 1 (re-initialized
as OC 25, top right panel) in
stau02 and OC 18
(re-initialized as OC 42, bottom
right panel) in stau12

6 Assessment of Results Obtained with the stauXX
Sequences

The investigations reported here attempt to answer the ques-
tion to which extent the automatic initialization described in
Sect. 3 allows to replace the semi-interactive initialization
process realized for the Xtrack-system used by Haag and
Nagel (1999). The two experiments compared for this pur-
pose differ in assessment details, in particular regarding the
time-point—i.e. the frame number—when a vehicle is con-
sidered to have been detected acceptably. Xtrack-results
can not be judged on such a criterion because there the ini-
tialization time-point had been determined interactively for
each vehicle. A similar argument applies to the automatic
choice of vehicle model which again had been determined
interactively for the Xtrack-experiments.

In addition to the newly relevant initialization time, an-
other aspect has to be taken into account. The Hough-
transform for the localization of a vehicle model searches
for the best match between the expected edge map (ob-

tained from a tentative projection of the vehicle model into
the image plane with suppression of occluded model seg-
ments) and the EE-map obtained from the image frame (see
Sect. 3.4). This search procedure delivers a suitable location
estimate for each vehicle even in cases where two vehicles
enter the FoV (almost) simultaneously with roughly compa-
rable velocities on two neighboring lanes. In contradistinc-
tion to this version with automatic initialization, Xtrack
assumed that the center of a suitably selected OF-blob, back-
projected into the road-plane, would provide an initial guess
for the location of one vehicle. In this latter case, it is prac-
tically impossible to split the resulting OF-vector cluster
unless a-priori knowledge about the lane structure is used,
based on the assumption that an OF-cluster extending across
two neighboring lanes is due to two neighboring vehicles.
This assumption had been exploited by Xtrack in order
to split such an OF-blob along the intermediate lane bound-
ary.

Such an assumption is no longer necessary if knowledge
about the vehicle model enters already into the localiza-
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tion phase—which had become justifiable due to the im-
proved OF-estimates and the improved OF-clusters obtained

Fig. 12 Example of late initialization due to masts. Top panel: vehi-
cle initialized correctly. Bottom panel: vehicle initialized lately due to
partial occlusion by masts

therefrom. As a consequence, the automatic initialization no
longer requires a lane-model.

In view of these complications for a juxtaposition of the
experiments reported in Haag and Nagel (1999) and here,
three different overall comparisons for the stauXX set of
image sequences are presented:

‘Strict’ assessment: Out of the Reference Set of 361 admit-
ted visible vehicles, 65% on average have been initialized
automatically and tracked satisfactorily, see Table 1 (en-
tries in column 1 + i, i = 1..12, correspond to results ob-
tained for image sequence stau{0}i).

‘Tolerant’ assessment: Because only four vehicle types
have been supplied to the system, these usually do not fit
the observed vehicles very well. Vehicle type selection is a
difficult task under such conditions and, therefore, tracking
is assessed as satisfactory even though a vehicle type has
been selected which is not fully appropriate. Under these
conditions, 76% of the Reference Set could be tracked at
least satisfactorily, see Table 2.

‘Fair’ assessment: In addition to the cases accepted in the
assessment characterized as ‘tolerant’ in the preceding
item, late initializations—for example at the pedestrian
crossing in the upper right quadrant of Fig. 12 (with ‘thin

Fig. 13 Example of a late
re-initialization (right panel)
after an occlusion

Table 1 Strict assessment (see text for detailed explanation)

Assessment 1 2 3 4 5 6 7 8 9 10 11 12
∑

++ 3 3 6 5 5 5 4 6 4 4 4 4 53

+ 4 7 11 2 6 9 3 12 3 6 10 12 85

o 10 5 4 3 10 16 3 15 5 7 17 3 98

– 11 9 6 7 3 6 2 6 3 10 14 12 89

- - 4 1 2 4 1 1 2 3 3 8 6 1 36

++/+/o 17 15 21 10 21 30 10 33 12 17 31 19 236

(65%)∑
32 25 29 21 25 37 14 42 18 35 51 32 361
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Table 2 Tolerant assessment (see text for detailed explanation)

Assessment 1 2 3 4 5 6 7 8 9 10 11 12
∑

++ 3 3 6 5 5 5 4 6 4 4 4 4 53

+ 4 7 11 2 6 9 3 12 3 6 10 12 85

o 15 8 6 3 12 18 5 20 7 13 21 8 136

– 6 6 4 7 1 4 0 1 1 4 10 7 51

- - 4 1 2 4 1 1 2 3 3 8 6 1 36

++/+/o 22 18 23 10 23 32 12 38 14 23 35 24 274

(76%)∑
32 25 29 21 25 37 14 42 18 35 51 32 361

Initialization failure (multiple countings)

no initiali- 0 0 1 1 0 0 0 0 0 1 0 0 3

zation at all

multiple 2 1 0 1 0 1 1 3 1 2 4 0 16

localization 8 5 4 2 7 11 1 9 2 7 13 4 73

late 8 5 5 7 1 4 0 1 1 3 7 6 48

Other failure reasons (multiple countings)

wrong

model 8 3 4 0 4 3 2 6 4 9 9 6 58

undetected 3 0 2 3 0 0 1 1 1 2 5 1 19

tracking

failures

tracking 0 1 0 0 2 5 2 6 3 3 2 2 26

failure

Fig. 14 Results on stau02 image sequence at frame 1600

occlusions’ of vehicles by masts, see left panel of Fig. 1)—
have been counted, too, as satisfactory because many of
these vehicles had also been initialized semi-interactively
at the same position in the case of Xtrack. Further-
more, late re-initializations related to temporary occlusion
of a vehicle have also been assessed as satisfactory (see

Fig. 13). Based on such a ‘fair’ assessment, 83% of all
vehicles from the Reference Set have been initialized and
tracked satisfactorily by the Motris system as described
above, see Table 3.

7 Conclusions

If we do not punish the automatic initialization approach
for difficulties which an interactive initialization with an
adapted vehicle model can not yet handle either—for exam-
ple a series of occlusions by traffic-signal masts and pedes-
trians as illustrated in the upper right corner of the FoV in
Fig. 1(left panel)—then the automatic initialization results
in a tracking rate of about 80% or better despite the fact
that it does not require an explicit lane model and, moreover,
uses a more general polyhedral model for all passenger ve-
hicles. This approach thus constitutes a significant advance
compared to the earlier Xtrack-system.

In a sense, the system approach described here marks the
beginning of a transition phase following two decades of
research on 3D-model-based vehicle tracking in road traf-
fic videos: This system comprises all components required
for geometry-controlled vehicle tracking which is mature
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Table 3 Detailed results obtained for a fair assessment (see text)

Assessment 1 2 3 4 5 6 7 8 9 10 11 12
∑

++ 3 3 6 5 5 5 4 6 4 4 4 4 53

+ 4 7 11 2 6 9 3 12 3 6 10 12 85

o 20 13 8 8 13 21 5 21 7 14 23 12 165

- 1 1 2 2 0 1 0 0 1 3 8 3 22

- - 4 1 2 4 1 1 2 3 3 8 6 1 36

++/+/o 27 23 25 15 24 35 12 39 14 24 37 28 303

(83%)∑
32 25 29 21 25 37 14 42 18 35 51 32 361

enough to justify its evaluation on such a large testing sam-
ple. At the same time, the discussion in the preceding section
illustrates numerous bottlenecks which need careful atten-
tion by future research.

The transition aspect is seen in the fact that the nec-
essary improvements and modifications can now be eval-
uated within an entire systems framework, as to be distin-
guished from limited tests and assessments of isolated com-
ponents.
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