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Abstract Visual tracking, in essence, deals with non-
stationary image streams that change over time. While most
existing algorithms are able to track objects well in con-
trolled environments, they usually fail in the presence of sig-
nificant variation of the object’s appearance or surrounding
illumination. One reason for such failures is that many algo-
rithms employ fixed appearance models of the target. Such
models are trained using only appearance data available be-
fore tracking begins, which in practice limits the range of ap-
pearances that are modeled, and ignores the large volume of
information (such as shape changes or specific lighting con-
ditions) that becomes available during tracking. In this pa-
per, we present a tracking method that incrementally learns a
low-dimensional subspace representation, efficiently adapt-
ing online to changes in the appearance of the target. The
model update, based on incremental algorithms for princi-
pal component analysis, includes two important features: a
method for correctly updating the sample mean, and a for-
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getting factor to ensure less modeling power is expended
fitting older observations. Both of these features contribute
measurably to improving overall tracking performance. Nu-
merous experiments demonstrate the effectiveness of the
proposed tracking algorithm in indoor and outdoor envi-
ronments where the target objects undergo large changes
in pose, scale, and illumination.

Keywords Visual tracking · Subspace update · Online
algorithms · Adaptive methods · Particle filter · Illumination

1 Introduction

Visual tracking essentially deals with non-stationary data,
both the target object and the background, that change over
time. Most existing algorithms are able to track objects,
either previously viewed or not, in short durations and in
well controlled environments. However these algorithms
usually fail to observe the object motion or have signifi-
cant drift after some period of time, due to drastic change
in the object’s appearance or large lighting variation in its
surroundings. Although such situations can be ameliorated
with recourse to richer representations, effective prediction
schemes or combination, most algorithms typically oper-
ate on the premise that the model of the target object does
not change drastically over time. Examples abound, ranging
from representation methods based on view-based appear-
ance models (Black and Jepson 1996), contours (Isard and
Blake 1996), parametric templates of geometry and illumi-
nation (Hager and Belhumeur 1996), integration of shape
and color (Birchfield 1998), mixture models (Black et al.
1998), 3D models (La Cascia and Sclaroff 1999), exemplars
(Toyama and Blake 2001), foreground/background models
(Harville 2002) templates with updating (Matthews et al.
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2004); prediction schemes using particle filters (Isard and
Blake 1996), joint probabilistic data association filters (Ras-
mussen and Hager 1998), kernel-based filters (Comaniciu
et al. 2003; Georgescu et al. 2004), support vector machines
(Avidan 2001; Williams et al. 2003) and variational infer-
ence (Vermaak et al. 2003). These algorithms usually build
or learn a model of the target object first and then use it for
tracking, without adapting the model to account for changes
in the appearance of the object, e.g., large variation of pose
or facial expression, or the surroundings, e.g., lighting varia-
tion. Furthermore, it is assumed that all images are acquired
with a stationary camera. Such an approach, in our view, is
prone to performance instability, thus needs to be addressed
when building a robust visual tracker.

The chief challenge of visual tracking can be attributed
to the difficulty in handling the appearance variability of a
target object. Intrinsic appearance variability includes pose
variation and shape deformation,whereas extrinsic illumina-
tion change, camera motion, camera viewpoint, and occlu-
sions inevitably cause large appearance variation. Due to the
nature of the tracking problem, it is imperative for a robust
algorithm to model such appearance variation.

In this paper we propose a method1 that, during visual
tracking, efficiently learns and updates a low dimensional
subspace representation of the target object. The advantages
of this adaptive subspace representation are several fold.
The subspace representation provides a compact notion of
the “thing” being tracked rather than treating the target as a
set of independent pixels, i.e., “stuff” (Adelson and Bergen
1991), and facilitates object recognition. An efficient incre-
mental method continually updates the subspace model to
reflect changes in appearance caused by intrinsic and extrin-
sic factors, thereby facilitating the tracking process. Incre-
mentally updating the subspace removes the offline learning
phase required by other eigentrackers, allowing one to track
objects for which a database of training images is not even
available. To estimate the locations of the target objects in
consecutive frames, we use a sampling algorithm with like-
lihood estimates, which is in contrast to other tracking meth-
ods that usually solve complex optimization problems using
gradient descent. Furthermore, while numerous algorithms
operate under the assumption that there is no camera motion,
our method is able to track objects without this constraint.

The remaining part of this paper is organized as follows.
We begin, in the next section, by reviewing the most relevant
algorithms that motivated this work. The details of our algo-
rithm are described in Sect. 3, where we propose an efficient
incremental subspace method with a mean update and for-
getting factor, followed by an effective tracking algorithm.

1Preliminary results of this paper were presented in Ross et al. (2004)
and Lim et al. (2005).

The results of numerous experiments and performance eval-
uation are presented in Sect. 4. We conclude this paper with
remarks on potential extensions for future work. The data,
source code, and videos corresponding to this work can all
be found at http://www.cs.toronto.edu/~dross/ivt/.

2 Related Work and Motivation

There is a rich literature in visual tracking and a thorough
discussion on this topic is beyond the scope of this paper. In
this section we review only the most relevant visual track-
ing work, focusing on algorithms that operate directly on
grayscale images. We contrast our method with these meth-
ods in terms of their representation scheme, target prediction
approach, and their ability to handle changes in illumination
as well as appearance.

Visual tracking problems have conventionally been for-
mulated as prediction tasks within which fixed templates and
optical flow techniques are utilized to estimate the motion of
a target object (Lucas and Kanade 1981). Such approaches
do not take the appearance variability into consideration, and
thus perform well only over short periods of time. To en-
hance the robustness of such object trackers, Black and Jep-
son proposed an algorithm using a pre-trained view-based
eigenbasis representation and a robust error norm (Black
and Jepson 1996). Instead of relying on the brightness con-
stancy principal assumed in optical flow techniques, they
advocated the use of a subspace constancy assumption for
motion estimation. Although their algorithm demonstrated
excellent empirical results, it entailed learning a set of view-
based eigenbases before the tracking task began. To achieve
robust visual tracking with this method, it is imperative to
collect a large set of training images covering the range of
possible appearance variation (including viewing angles and
illumination) from which to construct the eigenbasis, as this
representation, once learned, is not updated.

Observing that low-dimensional linear subspaces are able
to effectively model image variation due to illumination
(Belhumeur and Kreigman 1997), Hager and Belhumeur de-
veloped a tracking algorithm to handle the appearance vari-
ation caused by illumination and pose change using para-
metric models (Hager and Belhumeur 1996). Their method
extends a gradient-based optical flow algorithm by incor-
porating low-dimensional representations (Belhumeur and
Kreigman 1997) for object tracking under varying illumina-
tion conditions. Before tracking begins, a set of illumination
bases needs to be constructed at a fixed pose in order to ac-
count for changes in appearance due to lighting variation.
However, this basis does not attempt to account for changes
in pose such as out-of-plane rotations.

Realizing the limitations of having a single (unimodal or
Gaussian) hypothesis of target location at each timestep—
as produced by the Kalman filter and its relatives—Isard
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and Blake introduced particle filters to visual tracking and
presented the Condensation algorithm for contour track-
ing in which multiple plausible interpretations are propa-
gated over time (Isard and Blake 1996). This probabilis-
tic approach has demonstrated success in tracking the out-
line of target objects in clutter. However, the representa-
tion scheme employed (curves or splines) ignores the inter-
nal appearance of the target, and is not updated to account
for variations in its appearance, due to pose or illumination
change.

Supervised discriminative methods for classification and
regression have also been exploited to solve visual tracking
problems. For example, Avidan (2001) developed a tracking
algorithm that employs the support vector machine (SVM)
classifier within a optic flow framework. Avidan modified
the conventional use of the SVM classification score to in-
stead predict target location, by computing image gradi-
ents as is done in optical flow algorithms. Although this al-
gorithm has demonstrated success in tracking specific ob-
jects, e.g., cars from a mounted camera in a moving vehi-
cle, significant effort is required in training a SVM. Along
similar lines, Williams et al. developed a method in which
an SVM-based regressor was used for tracking (Williams
et al. 2003). Instead of relying on optical flow to predict
object location, they learned a perturbation function of spa-
tial in-plane displacements between frames, thereby predict-
ing the most likely object location. As a result of train-
ing the regressor on in-plane image motion, this method
is not effective in tracking objects with out-of-plane move-
ments.

Mixture models have been studied as alternatives to lin-
ear representations, to better account for appearance change
in motion estimation. Black et al. (1998) identified four pos-
sible factors causing appearance change, fitting them with a
mixture model which was then used to estimate image mo-
tion. A more elaborate mixture model fit via an online EM
algorithm was recently proposed by Jepson et al. (2003), in
which three components were used to model the responses
of wavelet filters, and thereby account for appearance vari-
ation during tracking. Their method is able to handle vari-
ations in pose, illumination and expression. However, their
appearance model treats pixels within the target region inde-
pendently (ignoring their covariance) and thus does not have
notion of the “thing” being tracked. This can result in mod-
eling background rather than the foreground, thereby failing
to track the target object (Jepson et al. 2003).

Attempts to improve the classic Lucas–Kanade tracker
(Lucas and Kanade 1981) with updates was recently made
by Matthews et al. (2004). They developed a template up-
date method for visual tracking, which employs an active
appearance model (Cootes et al. 2001) to account for im-
age variation. Thus instead of using a fixed template, the

object appearance is modeled by a linear combination of ap-
pearance images. The tracking problem is then formulated
as a search (using gradient descent) for the affine parame-
ters and linear combination which minimize the difference
between the target object and the current appearance model.
The newly tracked object is then used to update appearance
model, as necessary. They demonstrated good tracking re-
sults on vehicles and faces with varying expressions. How-
ever, the authors noted that the computation cost for updat-
ing the template increases dramatically as principal compo-
nent analysis is carried out at each update, and that their
work covers the case where the visibility of the target object
does not change.

Our work is motivated in part by the prowess of subspace
representations as appearance models (Murase and Nayar
1995; Belhumeur and Kreigman 1997), the effectiveness of
particle filters (Isard and Blake 1996), and the adaptability
of on-line update schemes (Jepson et al. 2003). In contrast to
the eigentracking algorithm (Black and Jepson 1996), our
algorithm does not require a training phase but learns the
eigenbases on-line during the object tracking process. Thus
our appearance model can adapt to changes in pose, view
angle, and illumination not captured by the set of training
images—in fact the need to manually collect training im-
ages prior to tracking is eliminated. Further, our method uses
a particle filter for motion parameter estimation rather than
the gradient descent method, which often gets stuck in local
minima or is distracted by outliers (Black and Jepson 1996).
Our appearance-based model provides a richer description
than simple curves or splines as used in (Isard and Blake
1996), and has a notion of the “thing” being tracked. In ad-
dition, the learned representation can be utilized for other
tasks such as object recognition. With respect to the template
update method (Cootes et al. 2001), we concurrently devel-
oped an efficient subspace update algorithm that facilitates
object tracking under varying pose and lighting conditions.
Furthermore, our algorithm is able to handle camera motion
while learning compact representations and tracking objects.
In this work, an eigenbasis representation is learned directly
from pixel values corresponding to a target object in the
image space. Experiments show that good tracking results
can be obtained using this representation without employing
more complicated wavelet features as in Jepson et al. (2003),
although this elaboration is still possible and may lead to
even better results. Note also that the view-based eigenba-
sis representation has demonstrated its ability to model the
appearance of objects in different poses (Murase and Nayar
1995), and under different lighting conditions (Belhumeur
and Kreigman 1997). Consequently, the learned eigenbasis
facilitates tracking objects undergoing illumination and pose
change.
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3 Incremental Learning for Tracking

We present details of the proposed incremental learning al-
gorithm for object tracking in this section. First we propose
an efficient method that incrementally updates an eigenbasis
as new observations arrive, which is used to learn the ap-
pearance of the target while tracking progresses. Next we
describe our approach for drawing particles in the motion
parameter space and predicting the most likely object loca-
tion with the help of the learned appearance model. Collec-
tively, we show how these two modules work in tandem to
track objects well under varying conditions.

3.1 Incremental Update of Eigenbasis and Mean

The appearance of a target object may change drastically
due to intrinsic and extrinsic factors as discussed earlier.
Therefore, to produce a robust tracker, it is important to
adapt the appearance model online, while tracking, to re-
flect these changes. The appearance model we have chosen,
a eigenbasis, is typically learned off-line from a set of train-
ing images {I1, . . . , In}, by taking computing the eigenvec-
tors U of the sample covariance matrix 1

n−1

∑n
i=1(Ii − Ī )

(Ii − Ī )�, where Ī = 1
n

∑n
i=1 Ii is the sample mean of the

training images. Equivalently one can obtain U by comput-
ing the singular value decomposition UΣV � of the centered
data matrix [(I1 − Ī ) · · · (In − Ī )], with columns equal to the
respective training images minus their mean.

Adapting the appearance model to account for novel
views of the target can be thought of as retraining the eigen-
basis with an additional m images {In+1, . . . , In+m}, for
some value of m. Naively, this update could be performed
by computing the singular value decomposition U ′Σ ′V ′T
of the augmented (centered) data matrix [(I1 − Ī ′) · · ·
(In+m − Ī ′)], where Ī ′ is the average of the entire n + m

training images.
Unfortunately this approach is unsatisfactory for online

applications, like visual tracking, due to its storage and com-
putational requirements. First, the naive approach uses the
entire set of training images for each update. If an update is
made at each video frame, then the number of images which
must be retained grows linearly with the length of the se-
quence. Second, the cost of computing the mean and singu-
lar value decomposition grows with the number of images,
so the algorithm will run ever slower as time progresses. In-
stead, the requirements of our application dictate that any
algorithm for updating the mean and eigenbasis must have
storage and computational requirements that are constant,
regardless of the number of images seen so far.

Numerous, more-sophisticated algorithms have been de-
veloped to efficiently update an eigenbasis as more data
arrive (Golub and Van Loan 1996; Hall et al. 1998; Levy
and Lindenbaum 2000; Brand 2002). However, most meth-
ods assume the sample mean is fixed when updating the

eigenbasis, or equivalently that the data is inherently zero-
mean. Neither assumption is appropriate in our application.
An exception is the method by Hall et al. (2002), which
does consider the change of the mean as each new datum
arrives. Although similar to our (independently-developed)
algorithm, it lacks the forgetting factor, which hurts its suit-
ability for tracking, and has a greater computational cost.
(Both of these disadvantages are demonstrated quantita-
tively in Sect. 4.3.) Part of the additional complexity comes,
because Hall’s algorithm is based on the notion of adding
eigenspaces, from computing the eigenvalue decomposition
of each block of new data as it arrives. In this respect our
algorithm is simpler, since it incorporates new data directly,
without the additional step.

Here we extend one of these efficient update proce-
dures—the Sequential Karhunen–Loeve (SKL) algorithm of
Levy and Lindenbaum (2000)—presenting a new incremen-
tal PCA algorithm that correctly updates the eigenbasis as
well as the mean, given one or more additional training data.
Our algorithm, a variation of which was first presented in
Lim et al. (2005), has also been applied to algorithms where
the subspace mean plays an important role. For example, it
can be applied to adaptively update the between-class and
within-class covariance matrices used in Fisher linear dis-
criminant analysis (Lin et al. 2005). We begin with a sum-
mary of the SKL algorithm, then describe our new incre-
mental PCA algorithm, and follow with a discussion of a
forgetting factor which can be used to down-weight the ef-
fect of earlier observations on the PCA model.

Putting aside for the moment the problem of the sample
mean, suppose we have a d ×n data matrix A = {I1, . . . , In}
where each column Ii is an observation (a d-dimensional
image vector in this paper), for which we have already com-
puted the singular value decomposition A = UΣV �. When
a d × m matrix B of new observations is available, the goal
is to efficiently compute the SVD of the concatenation of A

and B: [A B] = U ′Σ ′V ′�. Letting B̃ be the component of
B orthogonal to U , we can express the concatenation of A

and B in a partitioned form as follows:

[
A B

] = [
U B̃

]
[
Σ UT B

0 B̃�B

][
V � 0
0 I

]

. (1)

Let R =
[

Σ UT B

0 B̃�B

]
, which is a square matrix of size

k + m, where k is the number of singular values in Σ . The
SVD of R, R = ŨΣ̃Ṽ �, can be computed in constant time
regardless of n, the initial number of data. Now the SVD of
[A B] can be expressed as

[
A B

] =
([

U B̃
]
Ũ

)
Σ̃

(

Ṽ �
[
V � 0
0 I

])

.

Since an incremental PCA is only interested in comput-
ing U ′ and Σ ′, V ′, whose size scales with the number of
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observed data, need not be computed. Thus we arrive at the
following formulation of the SKL algorithm.

Given U and Σ from the SVD of A, compute U ′ and Σ ′
from the SVD of [A B]:
1. Obtain B̃ and R by taking the QR decomposition of

[UΣ B]: [U B̃]R QR= [UΣ B].
2. Compute the SVD of R: R

SVD= ŨΣ̃Ṽ �.
3. Finally U ′ = [U B̃]Ũ and Σ ′ = Σ̃ . If the desired number

of basis vectors in U ′ is less than the number of non-zero
singular values, then these excess vectors and singular
values may be discarded.

The algorithm can also be made slightly faster, al-
though somewhat more complicated, by modifying the
arrangement of calculations in Step 1. Instead of comput-
ing the QR decomposition of [UΣ B], B̃ and R can be
obtained directly as follows: B̃ = orth(B − UU�B) and

R =
[

Σ U�B

0 B̃(B−UU�B)

]
, where orth() performs orthogonal-

ization, perhaps via QR. This reorganization, which fol-
lows from (1), avoids performing QR on the entire ma-
trix [UΣ B] (note that the columns corresponding to
U are already orthogonal), instead only orthogonalizing
(B − UU�B), which is the component of B not already
in the subspace U .

The computational advantage of the SKL algorithm over
the naive approach is that it has space and time complexity
that is constant in n, the number of training data seen so far.
Specifically each update makes use of only the k largest sin-
gular values and basis vectors from the previous stage. This,
together with the storage required for the m new images,
reduces the space complexity to O(d(k + m)), down from
O(d(n + m)2) with the naive approach. Similarly, the com-
putational requirements are also reduced to O(dm2), versus
O(d(n+m)2) for recomputing the entire SVD. More details
and complexity analysis of the SKL algorithm are described
in Levy and Lindenbaum (2000).

The problem with the SKL algorithm as stated above is
that it makes no attempt to account for the sample mean
of the training data, which changes over time as new data

arrive. We will now show how this can be overcome. The
essence of the approach is, at each update of the eigenbasis,
to augment the new training data with an additional vector
carefully chosen to correct for the time-varying mean. We
begin by proving the following lemma:

Lemma 1 Let A = [I1, I2, . . . , In], B = [In+1, In+2, . . . ,

In+m] be data matrices and C = [A B] be their concate-
nation. Denote the means and scatter matrices of A, B , C

as ĪA, ĪB , ĪC , and SA, SB , SC respectively. It can be shown
that SC = SA + SB + nm

n+m
(ĪB − ĪA)(ĪB − ĪA)�.

In this lemma, we define a scatter matrix to be the outer
product of the centered data matrix, for example SB =∑m

i=n+1(Ii − ĪB)(Ii − ĪB)�. Thus a scatter matrix differs
from the sample covariance matrix by only a scalar multi-
ple SB = m cov(B). The proof of this lemma appears in the
Appendix.

From Lemma 1 we can see that the SVD of (C − ĪC) is
equal to the SVD of the horizontal concatenation of (A −
ĪA), (B − ĪB), and one additional vector

√
nm

n+m
(ĪB − ĪA).

(The slight abuse of notation (A − ĪA) is meant as a short-
hand for the matrix [(I1 − ĪA) · · · (In − ĪA)].) This motivates
our new algorithm, appearing in Fig. 1.

As can be seen, this algorithm shares the favorable com-
plexity of the SKL algorithm, incurring only a small con-
stant overhead to store, update, and correct for the changing
sample mean.

3.1.1 Forgetting Factor

In numerous vision applications it is desirable to focus more
on recently-acquired images and less on earlier observa-
tions. For example, when tracking a target with a chang-
ing appearing, it is likely that recent observations will be
more indicative of its appearance than would more distant
ones. Down-weighting the contribution of earlier observa-
tions also plays an important role in online learning. As time
progresses the observation history can become very large, to
the point of overwhelming the relative contribution of each

Given U and Σ from the SVD of (A − ĪA), as well as ĪA, n, and B , compute ĪC as well as U ′ and Σ ′ from the
SVD of (C − ĪC):

1. Compute the mean vectors ĪB = 1
m

∑n+m
i=n+1 Ii , and ĪC = n

n+m
ĪA + m

n+m
ĪB .

2. Form the matrix B̂ = [
(Im+1 − ĪB) . . . (In+m − ĪB)

√
nm

n+m
(ĪB − ĪA)

]
.

3. Compute B̃ = orth(B̂ − UU�B̂) and R =
[

Σ U�B̂

0 B̃(B̂−UU�B̂)

]
.

Note that B̃ will be one column larger than in the SKL algorithm.

4. Compute the SVD of R: R
SVD= ŨΣ̃Ṽ �.

5. Finally U ′ = [U B̃]Ũ and Σ ′ = Σ̃ .

Fig. 1 The incremental PCA algorithm with mean update
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block of new data, rendering the learner ‘blind’ to changes
in the observation stream.

One way to moderate the balance between old and new
observations is to incorporate a forgetting factor in the incre-
mental eigenbasis update, as suggested by Levy and Linden-
baum (2000). To do this, at each update the previous singu-
lar values are multiplied by a scalar factor f ∈ [0,1], where
f = 1 indicates no forgetting is to occur. Thus at Step 3 in

Fig. 1, R =
[

f Σ U�B̂

0 B̃(B̂−UU�B̂)

]
, which is equivalent to taking

the QR decomposition of [f UΣ B̂] instead of [UΣ B̂].
Although they propose the use of a forgetting factor, Levy

and Lindenbaum do not provide any analysis as to its effect
on the resulting eigenbasis. We address this with the follow-
ing lemma:

Lemma 2 A forgetting factor of f reduces the contribution
of each block of data to the overall covariance modeled by
an additional factor of f 2 at each SVD update.

Hence, after the kth update of the eigenbasis, the block of
m observations added during the j th update (j < k) will
have its covariance down-weighted by a factor of f 2(k−j).
The proof of Lemma 2 appears in the Appendix. The ob-
jective of PCA is to locate a subspace of dimension k that
retains as much of the data covariance as possible (i.e.,
maximizes the determinant of the projected data covariance
|U�cov(Data)U |, Jolliffe 2002). Therefore it is a ‘win’ for
PCA to select as basis vectors directions of large covariance
in recent data, at the expense of directions favored only by
earlier data.

An important consideration not previously addressed is
the affect of the forgetting factor on the mean of the eigen-
basis. Since the contribution of the previously-observed data
to the covariance is decreased, it is necessary to also reduce
its contribution to the resulting mean. When a forgetting fac-
tor of f is used, we propose the following modification to
the mean update (Step 1 in Fig. 1):

ĪC = f n

f n + m
ĪA + m

f n + m
ĪB

and at each update to compute the effective size of the ob-
servation history as n ← f n + m.

A benefit of incorporating the forgetting factor into the
mean update is that the mean can still change in response to
new observations, even as the actual number of observations
approaches infinity. Specifically, using n ← f n + m, the
effective number of observations will reach equilibrium at
n = f n+m, or n = m/(1−f ). For instance, when f = 0.95
and m = 5 new observations are included at each update,
the effective size of the observation history will approach
n = 100.

3.2 Sequential Inference Model

The visual tracking problem is cast as an inference task in
a Markov model with hidden state variables. The state vari-
able Xt describes the affine motion parameters (and thereby
the location) of the target at time t . Given a set of observed
images It = {I1, . . . , It }, we aim to estimate the value of the
hidden state variable Xt . Using Bayes’ theorem, we have the
familiar result

p(Xt |It ) ∝ p(It |Xt )

∫

p(Xt |Xt−1)p(Xt−1|It−1) dXt−1.

(2)

The tracking process is governed by the observation model
p(It |Xt ), where we estimate the likelihood of Xt observing
It , and the dynamical model between two states p(Xt |Xt−1).
The Condensation algorithm (Isard and Blake 1996), based
on factored sampling, approximates an arbitrary distribu-
tion of observations with a stochastically generated set of
weighted samples. We use a variant of the Condensation al-
gorithm to model the distribution over the object’s location,
as it evolves over time.

3.2.1 Dynamical Model

The location of a target object in an image frame can be
represented by an affine image warp. This warp transforms
the image coordinate system, centering the target within a
canonical box such as the unit square, as illustrated in Fig. 2.
In this work the state at time t consists of the six parameters
of an affine transformation Xt = (xt , yt , θt , st , αt , φt ) where
xt , yt , θt , st , αt , φt , denote x, y translation, rotation angle,
scale, aspect ratio, and skew direction at time t .

To develop a tracker for generic applications, the dynam-
ics between states in this space is modeled by Brownian
motion. Each parameter in Xt is modeled independently by
a Gaussian distribution around its counterpart in Xt−1, and
thus the motion between frames is itself an affine transfor-
mation. Specifically,

p(Xt |Xt−1) = N (Xt ;Xt−1,�), (3)

where � is a diagonal covariance matrix whose elements
are the corresponding variances of affine parameters, i.e.,
σ 2

x , σ 2
y , σ 2

θ , σ 2
s , σ 2

α , σ 2
φ . These parameters dictate the kind

of motion of interest to a tracker and this generic dynamical
model assumes the variance of each affine parameter does
not change over time. More the complex dynamics can be
modeled, such as first or second order dynamic systems, as
well as other adaptive techniques for specific applications
(North and Blake 1998). Like all the other applications us-
ing particle filters, there is a trade off between the number of
particles needed to be drawn (i.e., efficiency) and how well
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Fig. 2 The model of dynamics.
A location is represented by an
affine transformation
(e.g., Xt−1), which warps the
coordinate system so that the
target lies within the unit square.
Particles representing possible
target locations Xt at time t are
sampled according to
P (Xt |Xt−1), which in this case
is a diagonal-covariance
Gaussian centered at Xt−1

particle filters approximate the posterior distribution (i.e., ef-
fectiveness). With larger values in the diagonal covariance
matrix � and more particles, it is possible to track the object
with higher precision at the cost of increased computation.
In this paper, we find a balance between these factors for
efficient and effective visual tracking.

3.2.2 Observation Model

Since our goal is to use a representation to describe the
“thing” that we are tracking, we model image observa-
tions using a probabilistic interpretation of principal com-
ponent analysis (Tipping and Bishop 1999). Given an image
patch It predicated by Xt , we assume It was generated from
a subspace of the target object spanned by U and centered
at μ. The probability of a sample being generated from this
subspace is inversely proportional to the distance d from the
sample to the reference point (i.e., μ) of the subspace, which
can be decomposed into the distance-to-subspace, dt , and
the distance-within-subspace from the projected sample to
the subspace center, dw . This distance formulation, based on
a orthonormal subspace and its complement space, is similar
to (Moghaddam and Pentland 1995) in spirit.

The probability of a sample generated from a subspace,
pdt (It | Xt ), is governed by a Gaussian distribution:

pdt (It | Xt ) = N (It ;μ,UU�+ εI), (4)

where I is an identity matrix, μ is the mean, and εI term
corresponds to the additive Gaussian noise in the observa-
tion process. It can be shown (Roweis 1997) that the neg-
ative exponential distance from It to the subspace spanned
by U , i.e., exp(−‖(It − μ) − UU�(It − μ)‖2), is propor-
tional to N (It ;μ,UU�+ εI) as ε → 0.

Within a subspace, the likelihood of the projected sample
can be modeled by the Mahalanobis distance from the mean
as follows:

pdw(It | Xt ) = N (It ;μ,UΣ−2U�), (5)

where μ is the center of the subspace and Σ is the matrix
of singular values corresponding to the columns of U . Put
together, the likelihood of a sample being generated from
the subspace is governed by

p(It |Xt ) = pdt (It |Xt )pdw(It |Xt )

= N (It ;μ,UU� + εI)N (It ;μ,UΣ−2U�). (6)

Given a drawn particle Xt and the corresponding image
patch It , we aim to compute p(It |Xt ) using (6). To min-
imize the effect of noisy pixels, we utilize a robust error

norm (Black and Jepson 1996), ρ(x,σ ) = x2

σ 2+x2 instead of

the Euclidean norm ‖x‖2, to ignore the outliers (i.e., the pix-
els that are not likely to appear inside the target region given
the current eigenbasis). We use a method similar to that used
in Black and Jepson (1996) in order to compute dt and dw .
This robust error norm is helpful when we use a rectangular
region to enclose the target object (which inevitably contains
some noisy background pixels).

3.2.3 Distance Metric

The two distances, dt and dw , have a probabilistic interpre-
tation within a latent variable model, and care should be
taken to leverage their contributions within the observation
model specified in (6). Denote x ∈ Rd as a high dimensional
data sample (i.e., image observation It at time t discussed in
the previous section) and z ∈ Rq as the corresponding low-
dimensional latent variable. We can define a latent model
with Gaussian noise ε ∼ N (0, σ 2Id) as:

x = Wz + μ + ε, (7)

where W ∈ Rd×q is an orthogonal matrix, WT W = Iq , and
z is a zero mean Gaussian z ∼ N (0,L) with L being a diag-
onal matrix. From (7), we have

p(x|z) ∼ N (Wz + μ,σ 2Id). (8)
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1. Locate the target object in the first frame, either manually or by using an automated detector, and use a single
particle to indicate this location.

2. Initialize the eigenbasis U to be empty, and the mean μ to be the appearance of the target in the first frame.
The effective number of observations so far is n = 1.

3. Advance to the next frame. Draw particles from the particle filter, according to the dynamical model.
4. For each particle, extract the corresponding window from the current frame, and calculate its weight, which

is its likelihood under the observation model.
5. Store the image window corresponding to the most likely particle. When the desired number of new images

have been accumulated, perform an incremental update (with a forgetting factor) of the eigenbasis, mean, and
effective number of observations. In our experiments, the update is performed every fifth frame.

6. Go to step 3.

Fig. 3 A summary of the proposed tracking algorithm

In addition, we can compute the likelihood that observed
sample x is generated from the model, p(x):

p(x) =
∫

p(x|z)p(z)dz ∼ N (μ,WLWT + σ 2Id). (9)

By taking the log of p(x), we get

logp(x) = −1

2
{log(2π)d + log |WLWT + σ 2Id |

+ (x − μ)T (WLWT + σ 2Id)−1(x − μ)}. (10)

When parameters W , L and σ 2 are fixed. logp(x) is deter-
mined by (x − μ)T (WLWT + σ 2Id)−1(x − μ). According
to the Sherman–Morrison–Woodbury formula

(WLWT + σ 2Id)−1

= 1

σ 2
Id − 1

σ 2
W

(

L−1 + 1

σ 2
Iq

)−1

WT 1

σ 2
(11)

and since
(

L−1 + 1

σ 2
Iq

)−1

= σ 2(Iq − D−1), (12)

where D is a diagonal matrix with Dii = Lii + σ 2, we can
get:

(WLWT +σ 2Id)−1 = 1

σ 2
(Id −WWT )+WD−1WT . (13)

In the probabilistic PCA model, W and D correspond to the
eigenvectors and the diagonal matrix of eigenvalues of the
sample covariance matrix. Plugging (13) into (10), it is clear
that logp(x) is determined by two terms: the Euclidean dis-
tance to the subspace, (x − μ)T (Id − WWT )(x − μ) (i.e.,
dt in our formulation) weighted by 1

σ 2 , and the Mahalanobis

distance within the subspace, (x − μ)T WD−1WT (x − μ)

(i.e., dw in our model).
In (13) dt is scaled by σ 2 in computing logp(x). As the

observation noise σ 2 increases, the contribution of dt is re-
duced. On the other hand, the contribution of dw decreases

if D is increased when L in (7) is increased. When D goes
to infinity, the contribution of dw becomes null and logp(x)

is solely determined by dt . In this case, the Gaussian model
of latent variable z has infinite variance, which is equivalent
to the case that z is uniformly distributed.

In summary, if we only use dt as a measurement of p(x),
effectively we assume latent variable z is uniformly distrib-
uted in the subspace. If we use both dt and dw in comput-
ing p(x), then we assume that the distribution of z in the
subspace is Gaussian as it covers only a local region in the
subspace. In this work, we take the later view.

3.3 Summary of the Tracking Algorithm

We now provide a summary of the proposed tracking algo-
rithm in Fig. 3.

At the very beginning when the eigenbasis is empty (i.e.,
before the first update), our tracker works as a template
based tracker. There is a natural tradeoff between update fre-
quency and speed of movement. Likewise, there is a tradeoff
between the number of particles and granularity of move-
ment. We will discuss these implementation issues in the
next section.

4 Implementation and Experiments

To evaluate empirical performance of the proposed tracker,
we collected a number of videos recorded in indoor and out-
door environments where the targets change pose in differ-
ent lighting conditions. Each video consists of 320 × 240-
pixel grayscale images recorded at 30 frames per second,
unless specified otherwise. Note that there exists large and
unpredictable camera motion in the videos. For the eigen-
basis representation, each target image region is resized to
a 32 × 32 patch, and the number of eigenvectors used in
all experiments is set to 16, though fewer eigenvectors can
also work well. The forgetting term is empirically set to be
0.95, and the batch size for the eigenbasis update is set to 5
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Fig. 4 (Colour online) A person undergoing large pose, expression, appearance, and lighting change, as well as partial occlusions. The red window
shows the maximum a posteriori estimate of the particle filter, and the green windows show the other particles with weight above a threshold. The
results can be better viewed on high resolution displays or color printouts. More results are shown in the accompanying video

as a trade-off between computational efficiency and effec-
tiveness of modeling appearance change during fast motion.
Implemented in MATLAB with MEX, our algorithm runs at
7.5 frames per second with 600 particles on a standard 2.8
GHz computer. Here we present selected tracking results,
with more tracking results as well as videos available at
http://www.cs.toronto.edu/~dross/ivt/. Note that the results
can be better viewed on high resolution displays or color
printouts. Sample code and data sets are also available at the
aforementioned website.

We begin by showing the results of our tracker on sev-
eral sequences, then compare it qualitatively to two other
state-of-the-art trackers. Next we evaluate and compare the
trackers’ quantitative performance, and empirically demon-
strate the accuracy of our incremental PCA algorithm. We
conclude with a discussion of the experimental results.

4.1 Experimental Results

We first tested our algorithm using a challenging video
studied in Jepson et al. (2003). The image sequence was
downsampled by one-half, retaining only every other frame.
Figure 4 shows the empirical results using our proposed
method, where the first row of each panel shows the tracked
objects (enclosed with rectangles) and the second row shows
(from left to right) the subspace center, tracked image patch,
residue, and reconstructed image using current eigenbasis.
The red window shows the maximum a posteriori estimate

of the particle filter, and green windows show the other par-
ticles whose weights are above a threshold. The eigenba-
sis images of the current subspace are shown in the third
row of each panel (sorted according to their eigenvalues).
Note that our method is able to track the target undergo-
ing pose (#46, #185, #344, #376, #481), expression (#277,
#398), and lighting (#344, #440) variation. Further, our
method is able to track the target with temporary occlusion
(#104) and structured appearance change such as glasses
(#6, #185). Compared with the results reported in Jepson
et al. (2003), our method is able to efficiently learn a com-
pact representation while tracking the target object without
using wavelets. All the eigenbases are constructed automat-
ically from scratch and constantly updated to model the ap-
pearance of the target object, while it undergoes intrinsic
and extrinsic changes. The eigenbases capture the appear-
ance details of the target in different pose, expression, and
with or without glasses.

The second image sequence, shown in Fig. 5, contains
an animal doll moving in different pose, scale, and lighting
conditions. Once initialized in the first frame, our algorithm
is able to track the target object as it experiences large pose
change (#65, #272, #364, #521, #550, #609), a cluttered
background (#65, #450, #521, #609), scale change (#65,
#225), and lighting variation (#225, #364, #450, #609). No-
tice that the non-convex target object is localized within a
rectangular window, and thus it inevitably contains some
background pixels in its appearance representation. The ro-
bust error norm enables the tracker to ignore background
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Fig. 5 (Colour online) An animal doll moving with significant pose, lighting and scale variation in a cluttered scene. The results can be better
viewed on high resolution displays or color printouts

pixels and estimate the target location correctly. The results
also show that our algorithm faithfully models the appear-
ance of an arbitrary object, as shown in eigenbases and re-
constructed images, in the presence of noisy background
pixels. Nevertheless, our tracker eventually fails after frame
614 as a result of a combination of drastic pose and illumina-
tion change. Since the proposed algorithm is not limited to
rectangular patches when specifying a region of interest for
tracking, better results can be expected with more compact
enclosing windows for specific targets.

Figure 6 shows the tracking results using a challenging
sequence, recorded at 15 frames per second with a moving
digital camera, in which a person moves from a dark room
toward a bright area while changing his pose, moving under-
neath spotlights, changing facial expressions and taking off
his glasses. Notice that there is also a large scale variation
in the target relative to the camera. Even with the signifi-
cant camera motion and low frame rate (which makes the
motions between frames more significant, as when tracking
fast-moving objects), our algorithm is able to track the tar-
get throughout the sequence, experiencing only temporary
drifts. In contrast, most gradient or contour based trackers
are not expected to perform well due to the large lighting
variation, cast shadows, and unknown camera motion. With
the use of a particle filter, our tracker is able to recover from
temporary drifts due to a sudden and large pose change (be-
tween frames #166 and #167 in the accompanying video).

Furthermore, the eigenbasis is constructed from scratch and
is updated to reflect the appearance variation of the target
object.

We recorded a sequence to evaluate our tracker in out-
door environments, where lighting conditions often change
drastically. In it, a person walks underneath a trellis covered
by vines, resulting in a significant variation in appearance
due to cast shadows. As shown in Fig. 7, the cast shadows
change the appearance of the target face significantly (#96,
#155, #170, #180, #223, #278). Furthermore, the pose and
lighting variation combined with a low frame rate (15 fps)
makes the tracking task rather challenging (#198, #303).
Nevertheless, our algorithm is able track the target fairly ac-
curately and robustly. In this sequence the forgetting term
plays an important role, down-weighting the previously seen
face images and focusing on the most recent ones, as the ob-
ject appearance changes drastically.

Figure 8 shows the results of tracking a moving ve-
hicle, as it passes beneath a bridge and under trees. Al-
though there is a sudden illumination change (#12, #184,
#192, #232) in the scene, our tracker is able to track the
target well. Our algorithm is also able to track objects in
low resolution images, such as the sequence of a vehicle
driving at night, shown in Fig. 9. Despite the small size of
the target relative to the image, and the difficult illumina-
tion conditions, our algorithm is able to track the vehicle
well.
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Fig. 6 A person moves from a dark to a bright area, undergoing large lighting and pose changes. The images in the second row show the current
sample mean, tracked region, reconstructed image, and the reconstruction error respectively. The third and fourth rows show the top 10 principal
eigenvectors

Fig. 7 A person moves underneath a trellis with large illumination change and cast shadows while changing his pose. More results can be found
in the project web page

4.2 Qualitative Comparison

As a qualitative benchmark, we ran two state-of-the-art al-
gorithms, the WSL (Jepson et al. 2003) and Mean Shift (Co-
maniciu et al. 2003) trackers, on four of the sequences. The

results are depicted in Fig. 10. As can be seen in the fig-
ure (and corresponding videos), our method provides com-
parable performance to the WSL tracker. In the case of
the first “Dudek” sequence, it is able to do so despite us-
ing a tighter target window around the face. However in
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Fig. 8 A vehicle moving underneath an overpass and trees. Our algorithm is able to track the target despite the large illumination variation

Fig. 9 A vehicle moving in the night time with large illumination changes. Our algorithm is able to track the target when the images have low
resolution and contrast

the “animal doll” and “trellis”, sequences, the WSL tracker
proves to be more robust, continuing to track after our
method fails. In both cases the targets experience drastic
non-uniform changes in illumination from directed light
sources. The WSL tracker gains a distinct advantage in these

cases, based on its use of wavelet phase features as an input
representation. (It is possible that the performance of our
tracker could also be improved by using a wavelet repre-
sentation.) Further, our method not only tracks a target ob-
ject, it also learns a compact low-dimensional representation
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Fig. 10 (Colour online) A comparison of our tracker (indicated with a yellow box) with the WSL (Jepson et al. 2003) (shown in highlighted
ellipse) and the Mean Shift (Comaniciu et al. 2003) (depicted by a green dashed box) on four video sequences

which can be used for other applications such as recogni-
tion.

On the other hand, the Mean Shift tracker performs
poorly, experiencing significant drift off the target objects.
This can be attributed to the appearance model of the Mean
Shift tracker, based on histograms of pixel intensities, which
does not adapt over time, and is not sufficiently discrim-
inative on these grayscale-only sequences. We expect that
variants of the Mean Shift tracker using more sophisti-
cated representations or adaptive multi-component mod-
els (Georgescu et al. 2004), would show improved perfor-
mance.

4.3 Quantitative Analysis

To evaluate the tracking precision quantitatively, we tested
the ability of our algorithm to consistently track seven facial
feature points in the “Dudek” sequence. We compare our
results with the manually-labeled “ground truth” locations
of the features, as initially presented in Jepson et al. (2003).

To obtain estimates of the feature locations, we began by
tracking the face, obtaining a sequence of similarity trans-
formations approximately describing its motion from one
frame to the next. For this image sequence, we used slightly
larger variances, more particles (4000), and a forgetting fac-
tor of 0.99. Given the locations of the facial features in the
first frame, we applied the sequence of transformations to
these points, obtaining at each frame an estimate of where
the features lay. Representative tracking results are shown
in Fig. 11, with red x’s used to indicate our estimates of the
feature locations, and yellow x’s for the ground-truth posi-
tions.

Finally we computed the root mean square (RMS) er-
ror between the estimated locations of the features and the
ground-truth. The error is plotted for each frame in Fig. 12.
For most frames our tracking results match the ground truth
well, the largest errors occurring during brief occlusions or
fast pose changes. The average RMS error of our method
is 5.07 pixels per feature per frame, which is slightly better
than the error of 5.2 pixels reported for the WSL tracker in
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Fig. 11 (Colour online) A person undergoing large pose, expression, appearance, and lighting change, as well as partial occlusions. The yellow
crosses denote the ground truth data and the red crosses represent our tracking results. The differences can be best viewed when the images are
magnified on displays

Fig. 12 The RMS error at tracking feature points, for each frame in
the “Dudek” sequence. The abrupt increases in error occur when there
is temporary occlusion or motion blur

Jepson et al. (2003). In contrast, the Mean Shift tracker de-
scribed in Sect. 4.2 has an average error of 48.7 pixels. Note

that the errors in most frames are rather small and the errors
in a few frames contribute most to the average RMS error.

Comparing the ability to track labeled features also al-
lows us to quantitatively assess the contribution of the cor-
rect mean update and forgetting factor in our incremental
algorithm to overall tracking performance. First, we re-ran
the tracker without incrementally adapting the mean of the
eigenbasis. The resulting average error increased to 5.86
pixels per feature per frame. Next, we removed the forget-
ting factor from the algorithm (while using the correct mean
update) and re-ran the tracker. This caused an even larger
increase in error, to 7.70 pixels. Substituting our incremen-
tal algorithm with that of Hall et al. (2002), which lacks the
forgetting factor, also produced an error of 7.70. These re-
sults demonstrate that the mean update and, particularly, the
forgetting factor provide a measurable boost to tracking per-
formance.

To demonstrate the effectiveness of the proposed eigen-
basis update algorithm in modeling object appearance, we
compare the reconstruction results of our method to the con-
ventional PCA algorithm, and to the incremental algorithm
of Hall et al. (2002). For a fair comparison we do not use the



Int J Comput Vis (2008) 77: 125–141 139

Fig. 13 The first row shows a selection of test images. The second and fourth rows show the reconstructions of these images using the conventional
batch algorithm and our incremental algorithm, respectively. Their corresponding residues are presented in the third and fifth rows

forgetting factor in this experiment, so that the reconstruc-
tion error of each input image is treated equally by all algo-
rithms. Unlike conventional PCA, which constructs a sub-
space using all the frames in the video (i.e., batch mode),
the incremental algorithms—Hall’s and our own—update
the subspace periodically as frames arrive. For this exper-
iment, as with the tracker, we update the basis every five
frames. At any given time the incremental algorithms retain
only the top few eigenvectors, thereby providing an efficient
method with a compact representation.

We used the “animal doll” sequence for experiments, ex-
tracting images of the target object from the first 605 frames
of the sequence to use as training data. A selection of these
images are depicted in the first row of Fig. 13. The con-
ventional batch PCA algorithm, our algorithm, and that of
Hall et al. were used to construct bases consisting of 16 top
eigenvectors. For both incremental algorithms this entailed
121 incremental updates, retaining only the top 16 eigenvec-
tors after each update. When the learned bases were used to
reconstruct the training images, batch PCA incurred a RMS
reconstruction error of 7.93×10−2 per pixel, whereas the er-
ror of our algorithm was only slightly higher, at 8.03×10−2.
The reconstructed images using the batch PCA algorithm
and our algorithm are shown in rows 2 and 4 of Fig. 13
respectively, and rows 3 and 5 contain the corresponding
residue images.

In comparison, Hall’s algorithm achieved the same re-
construction error as our own, 8.03×10−2, however its run-
time, averaged over 100 repetitions, was 38% greater than
that of our algorithm. (The results of Hall’s algorithm are
not included in the figure since, when the forgetting factor is
not used, they are visually indistinguishable from our own.)
The batch PCA algorithm takes on average 6 times longer
than our incremental algorithm, even after we rearrange the
computation to calculate the eigenvectors of the Gram ma-
trix (XT X) rather than the covariance matrix (XXT ), as de-
scribed in Murase and Nayar (1995).

Thus, from these experiments we can conclude that our
incremental eigenbasis update method is able to effectively

model the object appearance without losing detailed infor-
mation, at a cost appreciably less than that of Hall et al.’s
algorithm.

4.4 Discussion

The robust tracking performance of our algorithm can be at-
tributed to several factors. One reason is that our incremen-
tal eigenbasis learning approach exploits the local linearity
of appearance manifold for matching targets in consecutive
frames. It is well known that the appearance of an object
undergoing pose change can be modeled well with a view-
based representation (Murase and Nayar 1995). Meanwhile
at fixed pose, the appearance of an object in different illumi-
nation conditions can be approximated well by a low dimen-
sional subspace (Belhumeur and Kreigman 1997). Our em-
pirical results show that these variations can be learned on-
line without any prior training phase, and also the changes
caused by cast and attached shadows can still be approxi-
mated by a linear subspace to certain extent. Consequently
the appearance of an object undergoing illumination and
pose variation can be approximated by a local subspace
within a short span of time, which in turns facilitates the
tracking task. Notice that at any time instant, it suffices to
use an eigenbasis to account for appearance variation if the
object motion or illumination change is not instantly dras-
tic. This work demonstrates that a tracker based on the idea
of an incremental eigenbasis update can be both efficient
and perform well empirically when the appearance change
is gradual. A few additional failure cases for this algorithm
can be seen at project the web site, mentioned earlier. Typ-
ically, failures happen when there is a combination of fast
pose change and drastic illumination change.

In this paper, we do not directly address the partial oc-
clusion problem. Empirical results show that temporary and
partial occlusions can be handled by our method through
constant update of the eigenbasis and the robust error norm.
Nevertheless situations arise where we may have prior
knowledge of the object being tracked, and can exploit such
information for better occlusion handling.
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5 Conclusions and Future Work

We have presented an appearance-based tracker that incre-
mentally learns a low dimensional eigenbasis representation
for robust object tracking while the target undergo pose, illu-
mination and appearance changes. Whereas most algorithms
operate on the premise that the object appearance or ambi-
ent environment lighting conditions do not change as time
progresses, our method adapts the model representation to
reflect appearance variation of the target, thereby facilitating
the tracking task. In contrast to the existing incremental sub-
space methods, our eigenbasis update method updates the
mean and eigenbasis accurately and efficiently, and thereby
learns to faithfully model the appearance of the target be-
ing tracked. Our experiments demonstrate the effectiveness
of the proposed tracker in indoor and outdoor environments
where the target objects undergo large pose and lighting
changes.

Although our tracker performs well, it occasionally drifts
from the target object. With the help of particle filters, the
tracker often recovers from drifts in the next few frames
when a new set of samples is drawn. For specific applica-
tions, better mechanisms to handle drifts could further en-
hance robustness of the proposed algorithm. The current
dynamical model in our sampling method is based on a
Gaussian distribution, but for certain specific applications
the dynamics could be learned from exemplars for more ef-
ficient parameter estimation. Our algorithm can also be ex-
tended to construct a set of eigenbases for modeling nonlin-
ear aspects of appearance variation more precisely and auto-
matically. We aim to address these issues in our future work.
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Appendix

Proof of Lemma 1
By definition, (ĪC = n

n+m
ĪA + m

n+m
ĪB, ĪA − ĪC =

m
n+m

(ĪA − ĪB)ĪB − ĪC = n
n+m

(ĪB − ĪA)) and,

SC =
n∑

i=1

(Ii − ĪC)(Ii − ĪC)�

+
n+m∑

i=n+1

(Ii − ĪC)(Ii − ĪC)�

=
n∑

i=1

(Ii − ĪA + ĪA − ĪC)(Ii − ĪA + ĪA − ĪC)�

+
n+m∑

i=m+1

(Ii − ĪB + ĪB − ĪC)(Ii − ĪB + ĪB − ĪC)�

= SA + n(ĪA − ĪC)(ĪA − ĪC)� + SB

+ m(ĪB − ĪC)(ĪB − ĪC)�

= SA + nm2

(n + m)2
(ĪA − ĪB)(ĪA − ĪB)�

+ SB + n2m

(n + m)2
(ĪA − ĪB)(ĪA − ĪB)�

= SA + SB + nm

n + m
(ĪA − ĪB)(ĪA − ĪB)�. �

Proof of Lemma 2
When a forgetting factor of f is used, the incremental

PCA algorithm in Fig. 1 computes the left-singular vectors
U ′ and singular values Σ ′ of the matrix [f UΣ B̂]. This is
equivalent to computing the eigenvectors and (the square-
roots of) the eigenvalues of [f UΣ B̂][f UΣ B̂]�. Now

[f UΣ B̂][f UΣ B̂]�= f 2UΣ2U�+ B̂B̂�

= f 2UΣV �V Σ�U�+ B̂B̂�

= f 2(A − ĪA)(A − ĪA) + B̂B̂�

= f 2SA + SB + ct,

where ct is a correction term that adjusts the mean of the
eigenbasis, and SA and SB are scatter matrices—a scalar
times the covariance matrix—as defined in Lemma 1. �
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